Modelling the effect of habitat and fishing heterogeneity on the performance of a Total Allowable Catch-regulated fishery

Author:

Pourtois Julie D12ORCID,Provost Mikaela M12,Micheli Fiorenza123,De Leo Giulio A12

Affiliation:

1. Hopkins Marine Station, Stanford University , Pacific Grove, CA 93950 , USA

2. Department of Biology, Stanford University , Stanford, CA 94305 , USA

3. Stanford Center for Ocean Solutions, Stanford University , Pacific Grove, CA 93950 , USA

Abstract

Abstract Fisheries are often characterized by high heterogeneity in the spatial distribution of habitat quality, as well as fishing effort. However, in several fisheries, the objective of achieving a sustainable yield is addressed by limiting Total Allowable Catch (TAC), set as a fraction of the overall population, regardless of the population's spatial distribution and of fishing effort. Here, we use an integral projection model to investigate how stock abundance and catch in the green abalone fishery in Isla Natividad, Mexico, are affected by the interaction of heterogeneity in habitat quality and fishing effort, and whether these interactions change with Allee effects—reproductive failure in a low-density population. We found that high-quality areas are under-exploited when fishing pressure is homogeneous but habitat is heterogeneous. However, this leads to different fishery outcomes depending on the stock's exploitation status, namely: sub-optimal exploitation when the TAC is set to maximum sustainable yield, and stability against collapses when the fishery is overexploited. Concentration of fishing effort in productive areas can compensate for this effect, which, similarly, has opposite consequences in both scenarios: fishery performance increases if the TAC is sustainable but decreases in overexploited fisheries. These results only hold when Allee effects are included.

Funder

Stanford Graduate Fellowship

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Reference65 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3