Genetic and biophysical modelling evidence of generational connectivity in the intensively exploited, Western North Atlantic red grouper (Epinephelus morio)

Author:

Bernard Andrea M1ORCID,Johnston Matthew W1,Pérez-Portela Rocío2,Oleksiak Marjorie F2,Coleman Felicia C3,Shivji Mahmood S1

Affiliation:

1. Guy Harvey Research Institute, Nova Southeastern University, 8000 North Ocean Drive, Dania Beach, FL, USA

2. Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, USA

3. Coastal and Marine Laboratory, Florida State University, 3618 Coastal Highway, St. Teresa, FL 32358, USA

Abstract

Abstract Understanding the connectivity of reef organisms is important to assist in the conservation of biological diversity and to facilitate sustainable fisheries in these ecosystems. Common methods to assess reef connectivity include both population genetics and biophysical modelling. Individually, these techniques can offer insight into population structure; however, the information acquired by any singular analysis is often subject to limitations, underscoring the need for a multi-faceted approach. To assess the connectivity dynamics of the red grouper (Epinephelus morio), an economically important reef fish species found throughout the Gulf of Mexico and USA western Atlantic, we utilized two sets of genetic markers (12 microsatellite loci and 632 single nucleotide polymorphisms) to resolve this species’ population genetic structure, along with biophysical modelling to deliver a spatial forecast of potential larval “sources” and “sinks” across these same regions and spatial scale. Our genetic survey indicates little, if any, evidence of population genetic structure and modelling efforts indicate the potential for ecological connectivity between sampled regions over multiple generations. We offer that using a dual empirical and theoretical approach lessens the error associated with the use of any single method and provides an important step towards the validation of either of these methodologies.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3