Regional-scale surface temperature variability allows prediction of Pacific bluefin tuna recruitment

Author:

Muhling Barbara A12,Tommasi Desiree12,Ohshimo Seiji3ORCID,Alexander Michael A4,DiNardo Gerard2

Affiliation:

1. Cooperative Institute for Marine Ecosystems and Climate (CIMEC), University of California Santa Cruz, La Jolla, CA, USA

2. NOAA National Marine Fisheries Service, Southwest Fisheries Science Center, La Jolla, CA, USA

3. National Research Institute of Far Seas Fisheries, Japan Fisheries Research and Education Agency, 5-7-1 Orido Shimizu-ku, Shizuoka, Japan

4. NOAA Earth System Research Laboratory, Boulder, CO, USA

Abstract

Abstract Future sustainable management of fisheries will require resilience to the effects of environmental variability and climate change on stock productivity. In this study, we examined relationships between sea surface temperature (SST) in the region between Taiwan and the Sea of Japan, and annual recruitment of Pacific bluefin tuna (Thunnus orientalis: PBF) over the past 35 years. Spatial correlation maps showed that warmer SSTs south of Shikoku, in the East China Sea and in the Sea of Japan from summer to late fall were associated with above average recruitment. SST anomalies near larval and juvenile habitats were most strongly correlated with local air temperatures. Generalized Additive Models predicting annual PBF recruitment from SST fields suggested that the influence of SST on recruitment was stronger than that of spawning stock biomass. Correlations between SST and recruitment likely reflect biological processes relevant to early juvenile habitat suitability. The influence of late fall SSTs could also be a result of varying availability of age-0 fish to the troll fishery; however, the relative importance of these processes was not clear. Despite these knowledge gaps, the strong predictive power of SST on PBF recruitment can allow more proactive management of this species under varying environmental conditions.

Funder

NOAA National Marine Fisheries Service

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3