Affiliation:
1. Department of Biological Science, Louisiana State University, Baton Rouge, LA 70803, USA
2. Department of Biology, California State University, Dominguez Hills, Carson, CA, USA
3. Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
Abstract
Abstract
Many studies have reported reductions in body size and calcification rates for marine larvae exposed to ocean acidification conditions. However, the physiological mechanisms driving these effects, and mechanisms underlying body size variation in general, are poorly understood. Here, we combine transcriptome sequencing with bulked segregant analysis to assess the physiological response to acidification in larvae of the California mussel, Mytilus californianus, and to explore physiological basis of variation in larval size. We reared three families of M. californianus larvae under ambient (∼350 µatm, pHtotal 8.1) and high (∼1300 µatm, pHtotal 7.6) pCO2 conditions, then passed larvae through a mesh filter, separating each family × pCO2 treatment into fractions of larvae with large vs. small body sizes. We sequenced larval mRNA for each family × treatment × body size combination, and assembled a de novo transcriptome. We then mapped reads from each library to this assembly to identify effects of high pCO2 on gene expression, and to identify transcriptomic differences between small vs. large larvae of the same age class. Although larvae reared under elevated pCO2 were smaller, we observed no consistent effect of elevated pCO2 on gene expression. Nevertheless, 1225 transcripts, primarily related to metabolism, were differentially expressed between large vs. small larvae, regardless of CO2 treatment. We conclude that the observed reduction in larval body size under high CO2 may be driven by a direct effect of the environment on phenotype, unmediated by changes in gene expression. Because M. calfornianus has evolved in the context of seasonal upwelling, exposure to 1300 µatm, pCO2 may not produce the large stress-mediated effects on gene expression that might be expected for an organism exposed to conditions far outside those of its typical environment.
Publisher
Oxford University Press (OUP)
Subject
Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography
Reference60 articles.
1. Size-specific predation on marine invertebrate larvae;Allen;The Biological Bulletin,2008
2. Basic local alignment search tool;Altschul;Journal of Molecular Biology,1990
3. Controlling the false discovery rate: A practical and powerful approach to multiple testing;Benjamini;Journal of the Royal Statistical Society; Series B,1995
4. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2;Benner;Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences,2013
5. Natural intrusions of hypoxic, low pH water into nearshore marine environments on the California coast;Booth;Continental Shelf Research,2012
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献