Satellite remote sensing for an ecosystem approach to fisheries management

Author:

Chassot Emmanuel1,Bonhommeau Sylvain1,Reygondeau Gabriel1,Nieto Karen12,Polovina Jeffrey J.3,Huret Martin4,Dulvy Nicholas K.5,Demarcq Herve1

Affiliation:

1. UMR 212 EME, IRD-IFREMER-UM2, Centre de Recherche Halieutique Méditerranéenne et Tropicale, Avenue Jean Monnet, BP 171, 34 200 Sète, France

2. Southwest Fisheries Science Center, NOAA Fisheries, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA

3. Pacific Islands Fisheries Science Center, NOAA Fisheries, 2570 Dole Street, Honolulu, Hawaii 96822-2396, USA

4. Département Ecologie et Modèles pour l'Halieutique, IFREMER, BP 21105, 44311 Nantes Cedex 03, France

5. Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, BC, CanadaV5A 1S6

Abstract

Abstract Chassot, E., Bonhommeau, S., Reygondeau, G., Nieto, K., Polovina, J. J., Huret, M., Dulvy, N. K., and Demarcq, H. 2011. Satellite remote sensing for an ecosystem approach to fisheries management. – ICES Journal of Marine Science, 68: 651–666. Satellite remote sensing (SRS) of the marine environment has become instrumental in ecology for environmental monitoring and impact assessment, and it is a promising tool for conservation issues. In the context of an ecosystem approach to fisheries management (EAFM), global, daily, systematic, high-resolution images obtained from satellites provide a good data source for incorporating habitat considerations into marine fish population dynamics. An overview of the most common SRS datasets available to fishery scientists and state-of-the-art data-processing methods is presented, focusing on recently developed techniques for detecting mesoscale features such as eddies, fronts, filaments, and river plumes of major importance in productivity enhancement and associated fish aggregation. A comprehensive review of remotely sensed data applications in fisheries over the past three decades for investigating the relationships between oceanographic conditions and marine resources is provided, emphasizing how synoptic and information-rich SRS data have become instrumental in ecological analyses at community and ecosystem scales. Finally, SRS data, in conjunction with automated in situ data-acquisition systems, can provide the scientific community with a major source of information for ecosystem modelling, a key tool for implementing an EAFM.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3