Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: regime shifts, trophic cascade, and feedback loops in a simple ecosystem

Author:

Möllmann Christian1,Müller-Karulis Bärbel2,Kornilovs Georgs3,St John Michael A.1

Affiliation:

1. Institute for Hydrobiology and Fisheries Science, University of Hamburg, Grosse Elbstr. 133, Hamburg D-22767, Germany

2. Latvian Institute of Aquatic Ecology, Daugavgrivas Street 8, LV-1048 Riga, Latvia

3. Latvian Fish Resources Agency, Daugavgrivas Street 8, LV-1007 Riga, Latvia

Abstract

Abstract Möllmann, C., Müller-Karulis, B., Kornilovs, G., and St John, M. A. 2008. Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: regime shifts, trophic cascade, and feeback loops in a simple ecosystem. – ICES Journal of Marine Science, 65: 302–310. The Central Baltic Sea is the largest brackish waterbody in the world ocean, containing a highly productive but low-diversity ecosystem. Climate-induced changes in hydrography recently caused an ecosystem regime shift with changes at all trophic levels. The most pronounced changes in the ecosystem occurred at the zooplankton and fish trophic levels. In the zooplankton, dominance changed between the copepods Pseudocalanus acuspes and Acartia spp., a result of reduced salinities and increased temperatures. The change in hydrography also affected the reproductive success of the major fish species, resulting in a change in dominance from the piscivorous cod (Gadus morhua) to the planktivorous sprat (Sprattus sprattus). First, we investigate statistically the occurrence of regime shifts in time-series of key hydrographic variables and the biomass time-series of key species. Second, we demonstrate a three-level trophic cascade involving zooplankton. Finally, we model the ecosystem effects of the abiotic and biotic changes on copepod biomass and recruitment of fish stocks. Our results demonstrate the linkage between climate-induced zooplankton and fish regime changes, and how overfishing amplified the climate-induced changes at both trophic levels. Hence, our study demonstrates (i) the multiple pathways along which climatic and anthropogenic pressures can propagate through the foodweb; (ii) how both effects act synergistically to cause and stabilize regime changes; and (iii) the crucial role of zooplankton in mediating these ecosystem changes.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3