Revisiting the larval dispersal black box in the Anthropocene

Author:

Chan Kit Yu Karen1,Sewell Mary A2,Byrne Maria3

Affiliation:

1. Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

2. School of Biological Sciences, University of Auckland, Auckland, New Zealand

3. School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia

Abstract

Abstract Many marine organisms have a multi-phase life history and rely on their planktonic larvae for dispersal. Despite the important role of larvae in shaping population distribution and abundance, the chemical, physical, and biological factors that shape larval fate are still not fully understood. Shedding light into this larval dispersal “black box” has become critical in the face of global climate change, primarily due to the importance of larval dispersal in formulating sound conservation and management strategies. Focusing on two major stressors, warming and acidification, we highlight the limitations of the current species-by-species, lab-based study approach, and particularly the lack of consideration of the larval experience along the dispersive pathway. Measuring organismal responses to environmentally relevant climate change stress demands an improved documentation of the physical and biological conditions that larvae experience through ontogeny, which in turn requires updated empirical and theoretical approaches. While there are meaningful between taxa comparisons to be made by larval ecologists, to peek into the dispersal black box and to investigate the larger scale consequences of altered dispersal requires innovative collaborations between ecologists, oceanographers, molecular biologists, statisticians, and mathematicians.

Funder

Research Grants Council of Hong Kong

Ministry of Business, Innovation and Employment

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3