Ocean currents predict fine-scale genetic structure and source-sink dynamics in a marine invertebrate coastal fishery

Author:

Silva C N S12,Macdonald H S3,Hadfield M G3,Cryer M4,Gardner J P A1

Affiliation:

1. School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, New Zealand

2. Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, 1 James Cook Dr, Townsville, QLD, Australia

3. National Institute of Water and Atmospheric Research, 301 Evans Bay Parade, Wellington, New Zealand

4. Ministry for Primary Industries, 25 The Terrace, Wellington, New Zealand

Abstract

Abstract Estimates of connectivity are vital for understanding population dynamics and for the design of spatial management areas. However, this is still a major challenge in the marine environment because the relative contributions of factors influencing connectivity amongst subpopulations are difficult to assess. This study combined population genetics with hydrodynamic modelling (Regional Ocean Modeling System, ROMS) to assess spatial and temporal exchange of individuals among subpopulations of the New Zealand scallop, Pecten novaezelandiae, within the Coromandel fishery area open to commercial fishing. Significant genetic differentiation was revealed among subpopulations with variable levels of recruitment. Connectivity, as assessed by ROMS, was a significant explanatory variable of genetic differentiation when accounting for the spatial dependency between locations. Although additional research is needed before source-sink population dynamics can be confidently used in management, these results imply that higher yields could be available from this fishery at lower risk of over-exploitation if the fishing of each subpopulation could be tailored to its contribution to recruitment, perhaps using subpopulation catch limits. This study highlights inter-annual patterns of connectivity, the importance of combining different methods for a better prediction of population dynamics, and how such an approach may contribute to management of living marine resources.

Funder

New Zealand Ministry for Primary Industries

Victoria University of Wellington Doctoral Scholarship to CNSS

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3