Asymmetry in the rate of warming and the phenology of seasonal blooms in the Northeast US Shelf Ecosystem

Author:

Friedland Kevin D1ORCID,Record Nicholas R2ORCID,Pendleton Daniel E3ORCID,Balch William M2ORCID,Stamieszkin Karen2ORCID,Moisan John R4ORCID,Brady Damian C5ORCID

Affiliation:

1. National Marine Fisheries Service , Narragansett, RI 02882 , USA

2. Bigelow Laboratory for Ocean Sciences , East Boothbay, ME 04544 , USA

3. Anderson Cabot Center for Ocean Life, New England Aquarium , Boston, MA 02110 , USA

4. Wallops Flight Facility, Goddard Space Flight Center , Wallops Island, VA 23337 , USA

5. School of Marine Sciences, University of Maine , Walpole, ME 04573 , USA

Abstract

AbstractPredicting the impact of marine ecosystem warming on the timing and magnitude of phytoplankton production is challenging. For example, warming can advance the progression of stratification thereby changing the availability of nutrients to surface phytoplankton, or influence the surface mixed layer depth, thus affecting light availability. Here, we use a time series of sea surface temperature (SST) and chlorophyll remote sensing products to characterize the response of the phytoplankton community to increased temperature in the Northeast US Shelf Ecosystem. The rate of change in SST was higher in the summer than in winter in all ecoregions resulting in little change in the timing and magnitude of the spring thermal transition compared to a significant change in the autumn transition. Along with little phenological shift in spring thermal conditions, there was also no evidence of a change in spring bloom timing and duration. However, we observed a change in autumn bloom timing in the Georges Bank ecoregion, where bloom initiation has shifted from late September to late October between 1998 and 2020—on average 33 d later. Bloom duration in this ecoregion also shortened from ∼7.5 to 5 weeks. The shortened autumn bloom may be caused by later overturn in stratification known to initiate autumn blooms in the region, whereas the timing of light limitation at the end of the bloom remains unchanged.  These changes in bloom timing and duration appear to be related to the change in autumn thermal conditions and the significant shift in autumn thermal transition. These results suggest that the spring bloom phenology in this temperate continental shelf ecosystem may be more resilient to thermal climate change effects than blooms occurring in other times of the year.

Funder

NASA

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3