Affiliation:
1. 1School for Marine Science and Technology, University of Massachusetts Dartmouth, 706 South Rodney French Boulevard, New Bedford, MA 02744, USA
2. 2Massachusetts Division of Marine Fisheries, 1213 Purchase Street, New Bedford, MA 02740, USA
Abstract
Abstract
Underwater video recordings in the mouth of a squid trawl were used to evaluate the effectiveness of a trawl configured with drop-chain groundgear to catch longfin inshore squid (Doryteuthis pealeii) and reduce bycatch of finfish in the Nantucket Sound squid fishery off Cape Cod, Massachusetts, USA. Entrance through the trawl mouth or escape underneath the fishing line and between drop chains was quantified for targeted squid, and two major bycatch species, summer flounder (Paralichthys dentatus) and skates (family Rajidae). Additionally, contact and impingement between animals and groundgear were also quantified. Fish and squid swimming behaviours, positions, orientations, and time in the trawl mouth were quantified and related to capture or escape at the trawl mouth. Squid entered the trawl singly and in schools, and no squid were observed escaping under the fishing line. Most squid entered the trawl in the upper portion of the trawl mouth; mantle orientated away from the trawl and swimming in the same direction, and were gradually overtaken, not actively attempting to escape. Summer flounder and skates were observed to remain on or near the seabed, orientated, and swimming in the same direction as the approaching trawl. The majority (60.5%) of summer flounder entered the trawl above the fishing line. Summer flounder that changed their orientation and turned 180° were significantly more likely to enter the trawl (p < 0.05). Most skates (89.7%) avoided trawl entrance and escaped under the fishing line. Neither squid nor summer flounder were observed to make contact or become impinged to the groundgear; however, 35.4% of skates had substantial contact with groundgear, with 12.3% becoming impinged. Video analysis results showed that the drop-chain trawl is effective at retaining targeted squid while allowing skates to escape. However, it is ineffective at avoiding the capture of summer flounder.
Publisher
Oxford University Press (OUP)
Subject
Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献