Sverdrup critical depth and the role of water clarity in Norwegian Coastal Water

Author:

Aksnes D. L.1

Affiliation:

1. Department of Biology, University of Bergen and Hjort Centre for Marine Ecosystem Dynamics, Bergen N-5020, Norway

Abstract

Abstract The critical depth concept was first recognized by Gran and Braarud (1935). During summer, in the Bay of Fundy, they observed an unexpected no bloom situation. Their interpretation was that high amounts of detritus of terrestrial origin caused too murky water and insufficient light for the tidally mixed phytoplankton. Almost 20 years later, this was elaborated by Sverdrup (1953) into a hypothesis for the initiation of the spring bloom in the North Atlantic Water (NAW) masses. Since then, variations in mixed layer depth have been a key in phytoplankton modelling. As illustrated by the study of Gran and Braarud, variation in the non-phytoplankton light attenuation coefficient is also a key to understand phytoplankton bloom conditions. Due to lack of accurate parameterizations, however, non-phytoplankton light attenuation is often assumed invariant in phytoplankton modelling. Here, I report spatial variation in a proxy for the pre-bloom light attenuation in Norwegian Coastal Water (NCW). It is shown that this variation can be partially accounted for by variations in salinity and dissolved oxygen. The light attenuation coefficient at 440 nm increased by 0.041 and 0.032 m−1 with drops in salinity and dissolved oxygen of 1PSU and 1 ml O2 l−1, respectively. Consequences for the euphotic depth, Sverdrup critical depth, and the nutricline depth are discussed. I conclude that phytoplankton modelling, particularly across coastal and oceanic waters, such as NCW and NAW, needs to account for variations in the non-phytoplankton light attenuation and that salinity might be a useful proxy for regional parameterizations.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3