Affiliation:
1. Department of Fisheries and Oceans, Population Ecology Division, St Andrews Biological Station, 531 Brandy Cove Road, St Andrews, NB, Canada E5B 2L9
Abstract
Abstract
Field studies to investigate the survey capability of a 500-kHz multibeam sonar to monitor and quantify Atlantic bluefin tuna were undertaken at several fishing locations (commercial and recreational) off Prince Edward Island and at a grow-out pen in Nova Scotia. The results demonstrate that individual bluefin can be detected, enumerated, and tracked acoustically within the swathe of the sonar. Bluefin were observed individually, and in groups ranging from 2 to 16 fish. Schooling tuna, assumed to be foraging, were observed moving in a soldier formation. Estimates of in situ swimming speeds (0.5–11.0 m s−1) were made by tracking individual fish within the swathe. The mean interspatial distance between fish when swimming in a group of two or more tuna was estimated to be 8.94 m with a range of 2.68–22.63 m. Groups of up to 48 bluefin were observed aggregating around active herring gillnet vessels. Dorsal aspect target strength estimates of bluefin, obtained from an accompanying 120-kHz echosounder (Simrad EK60), ranged from −33 to −14 dB for fish from 220 to 313 cm (size estimated from commercial catches). Sonar detection ranges were dependent upon sea state and water depth. In rough seas, the surface layer became too turbulent, and air bubble attenuation too high, to consistently separate reverberation from fish-like targets. In shallow water (20–30 m), a range setting of >50 m could not be utilized due to seabed reflections. In water depths >50–60 m, a tilt angle of 7.5o below the horizontal allowed the sonar's range of up to 150 m to be utilized with minimal reverberation from the surface and seabed. The results indicate there is potential for using a 500-kHz multibeam sonar in fishery-independent surveys to monitor and to quantify bluefin in shallow water (<100 m).
Publisher
Oxford University Press (OUP)
Subject
Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献