Sensitivity analysis and parameter selection for detecting aggregations in acoustic data

Author:

Burgos Julian M.1,Horne John K.12

Affiliation:

1. University of Washington, School of Fishery and Aquatic Sciences, Box 35520, Seattle, WA 98355, USA

2. National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, WA 98115, USA

Abstract

Abstract Burgos, J. M., and Horne, J. K. 2007. Sensitivity analysis and parameter selection for detecting aggregations in acoustic data. ICES Journal of Marine Science, 64: 160–168. A global sensitivity analysis was conducted on the algorithm implemented in the Echoview ® software to detect and describe aggregations in acoustic backscatter. Multiple aggregation detections were performed using walleye pollock (Theragra chalcogramma) data from the eastern Bering Sea. Walleye pollock form distinct aggregations and dense and diffuse layers. In each aggregation detection, input parameters defining minimum size, density, and distance to other aggregations were selected at random using a Latin hypercube sampling design. Sensitivity was quantified by testing for correlation among input parameters and a series of aggregation descriptors. In all, 336 correlation tests were performed, corresponding to a combination of seven detection input parameters, eight aggregation descriptors, and six transects. Among these, 181 tests were significant, indicating sensitivity between input parameters and aggregation descriptors. The aggregation-detection algorithm is sensitive to changes in threshold and minimum size, but less sensitive to changes in the connectivity criterion among aggregations.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3