Combining sensitivity and uncertainty analysis to evaluate the impact of management measures with ISIS–Fish: marine protected areas for the Bay of Biscay anchovy (Engraulis encrasicolus) fishery

Author:

Lehuta Sigrid1,Mahévas Stéphanie1,Petitgas Pierre1,Pelletier Dominique2

Affiliation:

1. Ifremer, rue de l’île d'Yeu BP 21105, 44311 Nantes Cedex 03, France

2. Ifremer, Technopole de Brest-Iroise, BP 70, 29280 Plouzané, France

Abstract

Abstract Lehuta, S., Mahévas, S., Petitgas, P., and Pelletier, D. 2010. Combining sensitivity and uncertainty analysis to evaluate the impact of management measures with ISIS–Fish: marine protected areas for the Bay of Biscay anchovy (Engraulis encrasicolus) fishery. – ICES Journal of Marine Science, 67: 1063–1075. Spatio-seasonal explicit simulation models can predict the impact of spatial management measures on marine fish populations and fishing activities. As fisheries are complex systems, fisheries simulation models are often complex, with many uncertain parameters. Here, the methodology is provided to deliver fishery diagnostics within an uncertainty context using a complex simulation tool. A sensitivity analysis of the model is performed on model outputs using partial least-squares to identify the most sensitive parameters. The impact of several management measures is then simulated using a statistical simulation design taking into account the uncertainty of the selected sensitive parameters. This approach was applied to the Bay of Biscay anchovy stock using the ISIS-Fish (Integration of Spatial Information for Simulation of Fisheries) model to assess the impact of imposing marine protected areas (MPAs) conditionally on parameter uncertainty. The diagnostic appeared to be highly sensitive to the mortality of larvae and juveniles, growth, and reproduction. The uncertainty of the values of these parameters did not permit any of the simulated MPA designs to be proposed. However, according to anchovy catch and biomass, the simulations allowed the low impact of closure duration to be shown and underscored the utility of protecting such key processes as spawning.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3