Optimization of a micronekton model with acoustic data

Author:

Lehodey Patrick1,Conchon Anna1,Senina Inna1,Domokos Réka2,Calmettes Beatriz1,Jouanno Julien3,Hernandez Olga4,Kloser Rudy5

Affiliation:

1. Space Oceanography Division, CLS, 8-10 rue Hermes, Ramonville 31520, France

2. Ecosystems and Oceanography Division, Pacific Islands Fisheries Science Center, NMFS, NOAA, 2570 Dole Street, Honolulu, HI 96822, USA

3. LEGOS, 18, av. Edouard Belin, Toulouse 31400, France

4. LOCEAN, 4 Place Jussieu, Paris 75252, France

5. CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart 7005, Australia

Abstract

Abstract In the pelagic foodweb, micronekton at the mid-trophic level (MTL) are one of the lesser known components of the ocean ecosystem despite being a major driver of the spatial dynamics of their predators, of which many are exploited species (e.g. tunas). The Spatial Ecosystem and Population Dynamics Model is one modelling approach that includes a representation of the spatial dynamics of several epi- and mesopelagic MTL functional groups. The dynamics of these groups are driven by physical (temperature and currents) and biogeochemical (primary production, euphotic depth) variables. A key issue to address is the parameterization of the energy transfer from the primary production to these functional groups. We present a method using in situ acoustic data to estimate the parameters with a maximum likelihood estimation approach. A series of twin experiments conducted to test the behaviour of the model suggested that in the ideal case, that is, with an environmental forcing perfectly simulated and biomass estimates directly correlated with the acoustic signal, a minimum of 200 observations over several time steps at the resolution of the model is needed to estimate the parameter values with a minimum error. A transect of acoustic backscatter at 38 kHz collected during scientific cruises north of Hawaii allowed a first illustration of the approach with actual data. A discussion followed regarding the various sources of uncertainties associated with the use of acoustic data in micronekton biomass.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3