Mesopelagic flesh shear viscosity estimation from in situ broadband backscattering measurements by a viscous–elastic model inversion

Author:

Khodabandeloo Babak1ORCID,Agersted Mette Dalgaard2ORCID,Klevjer Thor A2,Pedersen Geir1ORCID,Melle Webjørn2

Affiliation:

1. Ecosystem Acoustics Research Group, Institute of Marine Research, P.O.Box 1870, Nordnes, NO-5817 Bergen , Norway

2. Plankton Research Group, Institute of Marine Research, P.O.Box 1870, Nordnes, NO-5817 Bergen, Norway

Abstract

Abstract In fisheries acoustics, target strength (TS) is a key parameter in converting acoustic measurements to biological information such as biomass. Modelling is a versatile tool to estimate TS of marine organisms. For swimbladdered fish, flesh shear viscosity is one of the required parameters to correctly calculate TS around the resonance frequency, where the target scatters most strongly. Resonance of mesopelagic swimbladdered fish can occur over a range of frequencies and can be within commonly used frequencies (e.g. 18, 38, or 70 kHz). Since there is little information on flesh shear viscosity of fish, especially for mesopelagic species, their resonance can bias the biological information extracted from acoustic measurements. Here, first, the applicability of using a spherical model to estimate resonant backscattering of a generic swimbladder is investigated. Subsequently, a viscous–elastic spherical gas backscattering model is used to estimate the flesh shear viscosity of swimbladdered mesopelagic fish (most likely Cyclothone spp., Family: Gonostomatidae) from in situ broadband backscattering measurements. Finally, the effects of flesh shear viscosity on the TS of swimbladdered mesopelagic fish at 18, 38 (a widely used channel to study mesopelagic layers), and 70 kHz are examined.

Funder

Institute of Marine Research

HARMES

Research Council of Norway

MEESO

EU

Center for Research-based Innovation in Marine Acoustic Abundance Estimation and Backscatter Classification

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3