Affiliation:
1. Gulf of Maine Research Institute, 350 Commercial Street, Portland, ME04101, USA
Abstract
Abstract
Preserving larger fish is often advocated as a conservation measure to help fish populations buffer environmental variation and fishing pressure. The rationale is that several size- and age-dependent reproductive traits confer a higher reproductive value to larger fish. The effects of variation in these reproductive traits on the dynamics of populations under various fishing patterns are however seldom evaluated. In this study, we develop a simulation model to evaluate how variation in three reproductive traits (fecundity–mass, hatching probability, and batch spawning) impacts the capacity of a fish population to withstand and recover from high fishing pressure. Biological functions of the model were calibrated based on the Gulf of Maine Atlantic cod stock, which is currently experiencing its lowest biomass level ever estimated. Results showed that variation in the shape of the fecundity–mass relationship had the most substantial impact on population resistance and recovery. Batch spawning and variation in hatching probability had limited impacts. Furthermore, results showed that preserving larger fish by imposing a slot fishery increased the resistance of the population to high fishing pressure, because it helped preserve the population reproductive potential determined by the high fecundity of large fish. The slot fishery, however, impeded population recovery, because it distributed the fishing pressure on intermediate-size classes which potential for biomass growth is maximal. This study underlines the importance of using precise size-dependent fecundity estimates when evaluating the productivity and sustainability of fisheries, as well as the importance of identifying priority among the components of population resilience (e.g. resistance or recovery) before implementing size-selective harvest strategies.
Publisher
Oxford University Press (OUP)
Subject
Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献