Predicting abundance indices in areas without coverage with a latent spatio-temporal Gaussian model

Author:

Breivik Olav Nikolai1ORCID,Aanes Fredrik1,Søvik Guldborg2,Aglen Asgeir2,Mehl Sigbjørn2,Johnsen Espen2

Affiliation:

1. Norwegian Computing Center, Oslo 0373, Norway

2. Institute of Marine Research, Bergen 5817, Norway

Abstract

Abstract A general spatio-temporal abundance index model is introduced and applied on a case study for North East Arctic cod in the Barents Sea. We demonstrate that the model can predict abundance indices by length and identify a significant population density shift in northeast direction for North East Arctic cod. Varying survey coverage is a general concern when constructing standardized time series of abundance indices, which is challenging in ecosystems impacted by climate change and spatial variable population distributions. The applied model provides an objective framework that accommodates for missing data by predicting abundance indices in areas with poor or no survey coverage using latent spatio-temporal Gaussian random fields. The model is validated, and no violations are observed.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3