Otolith increment width-based chronologies disclose temperature and density-dependent effects on demersal fish growth

Author:

Vieira Ana Rita12ORCID,Dores Sandra3,Azevedo Manuela3,Tanner Susanne E12ORCID

Affiliation:

1. MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal

2. Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal

3. Instituto Português do Mar e da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, Lisboa 1495-006, Portugal

Abstract

Abstract Climate change and fishing are drastically impacting marine ecosystems. Comprehending the biological consequences of these effects on commercially exploited fish is especially challenging. Here, we developed a 43-year otolith increment width-based growth chronology for one of the most important commercially exploited fish species in the Northeast Atlantic (European hake, Merluccius merluccius). Increasingly complex linear mixed-effects models were used to partition growth variation into intrinsic (age, sex, and age-at-capture) and extrinsic (environmental and biotic variables) factors, allowing age interaction with extrinsic variables to assess age-dependent responses in growth. Our results provided strong evidence that European hake growth is impacted by ocean temperature, namely sea surface temperature and temperature at depth, and species abundance (recruitment), with different responses depending on fish age. We found evidence that increasing ocean temperature could be highly detrimental for species growth especially during the first years of life. We provided insights into the effects of environmental and biotic factors on species growth variation. Such information is key to recognize the sensitivity of European hake growth to climate change, which may contribute to sustainable management policies for this valuable resource.

Funder

Fundação para a Ciência e a Tecnologia

Plano Nacional de Amostragem Biológica

EU-Data Collection Framework

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3