Managing a complex population structure: exploring the importance of information from fisheries-independent sources

Author:

Hintzen N. T.1,Roel B.2,Benden D.1,Clarke M.3,Egan A.3,Nash R. D. M.4,Rohlf N.5,Hatfield E. M. C.6

Affiliation:

1. IMARES, part of Wageningen UR, Institute for Marine Resources and Ecosystem Studies, PO Box 68, 1970 AB IJmuiden, The Netherlands

2. Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 OHT, UK

3. The Marine Institute, Rinville, Oranmore, Co. Galway, Ireland

4. Institute of Marine Research, PB 1870 Nordnes, 5817 Bergen, Norway

5. Thünen-Institute of Sea Fisheries, Palmaille 9, D-22767 Hamburg, Germany

6. Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK

Abstract

Abstract Natural resource managers aim to manage fish stocks at sustainable levels. Often, management of these stocks is based on the results of analytical stock assessments. Accurate catch data, which can be attributed to a specific population unit and reflects the population structure, are needed for these approaches. Often though, the quality of the catch data is compromised when dealing with a complex population structure where fish of different population units mix in a fishery. The herring population units west of the British Isles are prone to mixing. Here, the inability to perfectly allocate the fish caught to the population unit they originate from, due to classification problems, poses problems for management. These mixing proportions are often unknown; therefore, we use simulation modelling combined with management strategy evaluation to evaluate the role fisheries-independent surveys can play in an assessment to provide unbiased results, irrespective of population unit mixing and classification success. We show that failure to account for mixing is one of the major drivers of biased estimates of population abundance, affecting biomass reference points and MSY targets. When mixing of population units occurs, the role a survey can play to provide unbiased assessment results is limited. Either different assessment models should be employed or stock status should be considered from the survey data alone. In addition, correctly classifying the origin of fish is especially important for those population units that are markedly smaller in size than other units in the population complex. Without high classification success rates, smaller population units are extremely vulnerable to overexploitation.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3