Geostatistical delta-generalized linear mixed models improve precision for estimated abundance indices for West Coast groundfishes

Author:

Thorson James T.1,Shelton Andrew O.2,Ward Eric J.2,Skaug Hans J.3

Affiliation:

1. Fisheries Resource Assessment and Monitoring Division (FRAM), Northwest Fisheries Science Center, National Marine Fisheries Service (NMFS), NOAA, 2725 Montlake Boulevard E, Seattle, WA 98112, USA

2. Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service (NMFS), NOAA, 2725 Montlake Boulevard E, Seattle, WA 98112, USA

3. Department of Mathematics, University of Bergen, PO Box 7800 5020 Bergen, Norway

Abstract

AbstractIndices of abundance are the bedrock for stock assessments or empirical management procedures used to manage fishery catches for fish populations worldwide, and are generally obtained by processing catch-rate data. Recent research suggests that geostatistical models can explain a substantial portion of variability in catch rates via the location of samples (i.e. whether located in high- or low-density habitats), and thus use available catch-rate data more efficiently than conventional “design-based” or stratified estimators. However, the generality of this conclusion is currently unknown because geostatistical models are computationally challenging to simulation-test and have not previously been evaluated using multiple species. We develop a new maximum likelihood estimator for geostatistical index standardization, which uses recent improvements in estimation for Gaussian random fields. We apply the model to data for 28 groundfish species off the U.S. West Coast and compare results to a previous “stratified” index standardization model, which accounts for spatial variation using post-stratification of available data. This demonstrates that the stratified model generates a relative index with 60% larger estimation intervals than the geostatistical model. We also apply both models to simulated data and demonstrate (i) that the geostatistical model has well-calibrated confidence intervals (they include the true value at approximately the nominal rate), (ii) that neither model on average under- or overestimates changes in abundance, and (iii) that the geostatistical model has on average 20% lower estimation errors than a stratified model. We therefore conclude that the geostatistical model uses survey data more efficiently than the stratified model, and therefore provides a more cost-efficient treatment for historical and ongoing fish sampling data.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3