Planktivorous fish in a future Arctic Ocean of changing ice and unchanged photoperiod

Author:

Kaartvedt Stein1,Titelman Josefin1

Affiliation:

1. Department of Biosciences, University of Oslo, Blindern, Oslo, Norway

Abstract

Abstract Climate change drives fish and plankton species ranges toward the poles, often related to warmer waters mediating geographic distributions via changes in vital rates. Yet, the distribution of fish may also be governed by less acknowledged mechanisms. Ice limits access to air for physostomous fish filling their swimbladders at the surface. We hypothesize that release of ice constraints may facilitate northward expansion of physostomes, with implied impact on their zooplankton prey. On the other hand, even in a changing Arctic, the extreme high-latitude photoperiod will persist. The abundance of mesopelagic fish is low in the Arctic Ocean. Feeding conditions may be inferior during the darkness of winter and in light summer nights. If the photoperiod is constraining distributions, biogeographic boundaries of mesopelagic fish may be relatively unaffected by climate change. Alternatively, if low temperatures are their main constraint, we hypothesize that northward extensions in a warmer ocean may be detrimental to key Arctic copepods as we argue that their current success relates to low mortality during overwintering in the absence of mesopelagic fish. It is therefore essential to discriminate the role of the light climate at high latitudes from those related to temperatures for assessing future biogeographic boundaries.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3