Modeling bycatch abundance in tropical tuna purse seine fisheries on floating objects using the Δ method

Author:

Dumont Agathe12,Duparc Antoine23,Sabarros Philippe S23,Kaplan David M23ORCID

Affiliation:

1. PHIM Plant Health Institute, CIRAD, INRAE, Institut Agro, IRD, University of Montpellier , Montpellier 34980 , France

2. MARBEC, Univ Montpellier, CNRS , Ifremer, IRD, 34203 Sète , France

3. Institut de Recherche pour le Développement (IRD) , Av. Jean Monnet, CS3017, 34203 Sète Cédex , France

Abstract

Abstract Bycatch rates are essential to estimating fishery impacts and making management decisions, but data on bycatch are often limited. Tropical tuna purse seine (PS) fisheries catch numerous bycatch species, including vulnerable silky sharks. Even if bycatch proportion is relatively low, impacts on pelagic ecosystems may be important due to the large size of these fisheries. Partial observer coverage of bycatch is a major impediment to assessing impacts. Here we develop a generic Δ modeling approach for predicting catch of four major bycatch species, including silky sharks, in floating object-associated fishing sets of the French Indian Ocean PS fleet from 2011 to 2018 based on logbook and observer data. Cross-validation and variable selection are used to identify optimal models consisting of a random forest model for presence–absence and a negative binomial general-additive model for abundance when present. Though models explain small to moderate amounts of variance (5–15%), they outperform a simpler approach commonly used for reporting, and they allow us to estimate total annual bycatch for the four species with robust estimates of uncertainty. Interestingly, uncertainty relative to mean catch is lower for top predators than forage species, consistent with these species having similar behavior and ecological niches to tunas.

Funder

IRD

Horizon Europe

EU

ORTHONGEL

Publisher

Oxford University Press (OUP)

Reference46 articles.

1. Bycatch of the European purse seine tuna fishery in the Atlantic Ocean for the 2003–2007 period;Amandè;Aquat Living Resour,2010

2. Prediction intervals for Generalized Additive Models (GAMs);Andersen,2022

3. Global habitat preferences of commercially valuable tuna;Arrizabalaga;Deep Sea Res II Topic Stud Oceanogr,2015

4. Realising the food security benefits of canned fish for Pacific Island countries;Bell;Mar Policy,2019

5. Cross-validation;Berrar,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3