The acoustic identification of Atlantic mackerel

Author:

Korneliussen Rolf J.1

Affiliation:

1. Institute of Marine Research, PO Box 1870 Nordnes, 5817 Bergen, Norway

Abstract

Abstract Korneliussen, R. J. 2010. The acoustic identification of Atlantic mackerel. – ICES Journal of Marine Science, 67: 1749–1758. Calibrated, digitized data from multifrequency echosounders working simultaneously with nearly identical and overlapping acoustic beams were used to generate new, synthetic echograms which allow Atlantic mackerel (Scomber scombrus) to be identified acoustically. The raw echosounder data were processed stepwise in a modular sequence of analyses to improve categorization of the acoustic targets. The relative frequency response measured over as many as six operating frequencies, 18, 38, 70, 120, 200, and 364 kHz, was the main acoustic feature used to characterize the backscatter. Mackerel seemed to have a frequency-independent backscatter below ∼100 kHz, but significantly higher levels of backscattered energy at 200 kHz. Synthetic echograms containing targets identified acoustically as mackerel are presented and evaluated against trawl catches. Although catching fast-swimming mackerel is difficult, trawl catches from three Norwegian research vessels confirmed that the targets identified acoustically as mackerel were indeed that species. Separate experiments performed on mackerel in pens support the findings.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Reference19 articles.

1. Smaller mesozooplankton. Report of Working Party 2;Tranter,1968

2. The “MultiSampler”: a system for remotely opening and closing multiple cod ends on a sampling trawl;Engås;Fisheries Research,1997

3. Importance of the swimbladder in acoustics scattering by fish: a comparison of gadoid and mackerel target strengths;Foote;Journal of the Acoustical Society of America,1980

4. Optimizing copper spheres for precision calibration of hydroacoustic equipment;Foote;Journal of the Acoustical Society of America,1982

5. More on the frequency dependence of target strength of mature herring;Foote,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3