Measurements of acoustic-scattering spectra from the whole and parts of Atlantic mackerel

Author:

Nesse Tonje Lexau1,Hobæk Halvor1,Korneliussen Rolf J.2

Affiliation:

1. Department of Physics and Technology, University of Bergen, Bergen, Norway

2. Institute of Marine Research, PO Box 1870 Nordnes, N-5817 Bergen, Norway

Abstract

Abstract Nesse, T. L., Hobæk, H., and Korneliussen, R. J. 2009. Measurements of acoustic-scattering spectra from the whole and parts of Atlantic mackerel. – ICES Journal of Marine Science, 66: 1169–1175. Atlantic mackerel (Scomber scombrus) are weak sound scatterers compared with fish that have swimbladders. Accurate acoustic estimates of mackerel abundance require estimates of target strength. Different parts of mackerel may dominate the backscattering spectra. Mackerel schools are acoustically recognized mainly by backscatter four times stronger at 200 kHz than at 38 kHz. Simulations have established that backscatter from only the flesh and the backbone could explain this frequency response, although there are uncertainties in the model parameters and simplifications. In this paper, experiments conducted in a laboratory tank to investigate the complexity of mackerel backscatter are discussed. Acoustic backscatter was measured over the frequency range 65–470 kHz from individual dead mackerel, and their backbones, heads, and skulls. Backscatter from the backbones was measured at several angles of incidence. Grating lobes (Bragg scattering) appeared at different angles, depending on the acoustic frequency and the spacing of the vertebrae. These lobes were evident in backbone backscatter after propagating through the flesh and can be used, in principle, to determine mackerel size acoustically. The frequency response of individual, ex situ Atlantic mackerel estimated from these measurements did not match that from the measurements of in situ mackerel schools. Further investigation is warranted.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Reference15 articles.

1. ICES Report of the Working Group on Mackerel and Horse Mackerel Egg Surveys;Anon.,2003

2. A design study of an acoustic system suitable for differentiating between orange roughy and other New Zealand deepwater species;Barr;Journal of the Acoustical Society of America,2001

3. Importance of the swimbladder in acoustics scattering by fish: a comparison of gadoid and mackerel target strengths;Foote;Journal of the Acoustical Society of America,1980

4. Calibration of acoustic instruments for fish density estimation: a practical guide;Foote,1987

5. Acoustic backscatter by schools of adult Atlantic mackerel;Gorska;ICES Journal of Marine Science,2007

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3