Silent ships sometimes do encounter more fish. 1. Vessel comparisons during winter pollock surveys

Author:

De Robertis Alex1,Wilson Christopher D.1,Williamson Neal J.1,Guttormsen Michael A.1,Stienessen Sarah1

Affiliation:

1. National Marine Fisheries Service, Alaska Fisheries Science Center, Resource Assessment and Conservation Engineering Division, 7600 Sand Point Way NE, Seattle, WA 98115, USA

Abstract

Abstract De Robertis, A., Wilson, C. D., Williamson, N. J., Guttormsen, M. A., and Stienessen, S. 2010. Silent ships sometimes do encounter more fish. 1. Vessel comparisons during winter pollock surveys. – ICES Journal of Marine Science, 67: 985–995. Avoidance of approaching vessels by fish is a major source of uncertainty in surveys of fish stocks. In an effort to minimize vessel avoidance, international standards for underwater-noise emission by research vessels have been established. Despite widespread investment in noise-reduced vessels, the effectiveness of noise reduction on vessel avoidance remains poorly understood. Here, we report on vessel comparisons of pollock abundance recorded by the NOAA ships “Oscar Dyson” (OD), a noise-reduced vessel, and “Miller Freeman” (MF), a conventionally designed vessel. The comparisons were made during three acoustic surveys of prespawning aggregations of walleye pollock (Theragra chalcogramma) in Alaska. The experiments demonstrate that a noise-reduced vessel will detect significantly more fish backscatter than a conventional vessel in some situations. OD detected 31% more pollock backscatter than MF in the Shumagin Islands, where pollock were distributed between 100 and 200 m deep, and 13% more pollock backscatter in Shelikof Strait, where pollock were primarily distributed 200–300 m deep. However, there was no difference in the Bogoslof Island area where pollock were found at 400–700 m. In the Shumagin and Shelikof areas, the discrepancy between vessels tended to decrease with fish depth, consistent with a decreasing response to a stimulus propagating from the surface. Analysis of the depth distributions of pollock supports the conclusion that the discrepancies in backscatter stem from differential behavioural responses to the two vessels.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3