Annotating otoliths with a deep generative model

Author:

Bojesen Troels Arnfred1,Denechaud Côme2ORCID,Malde Ketil12ORCID

Affiliation:

1. Department of Informatics, University of Bergen , Bergen 5007 , Norway

2. Institute of Marine Research , Bergen 5005 , Norway

Abstract

Abstract Otoliths are a central information source for fish ecology and stock management, conveying important data about age and other life history for individual fish. Traditionally, interpretation of otoliths has required skilled expert readers, but recently deep learning classification and regression models have been trained to extract fish age from images of otoliths from a variety of species. Despite high accuracy in many cases, the adoption of such models in fisheries management has been slow. One reason may be that the underlying mechanisms the model uses to derive its results from the data are opaque, and this lack of legibility makes it challenging to build sufficient trust in the results. Here, we implement a deep learning model that instead of age predicts the location of annotation marks for each of the annuli. This allows an expert to evaluate the model’s performance in detail. The quality of the annotations was judged by a panel of four expert otolith readers in a double-blinded randomized survey. Using a scale from 1 to 5, the generated marks received an average quality score of 4.22, whereas expert annotations received an average score of 4.33. By counting the marks to determine fish age, we obtained an agreement between expert and model annotations of 64% on our test set, which running the model stochastically increased to 69%. Stochastic sampling yields further benefits, including an explicit measure of the model’s uncertainty, the post hoc likelihood of the different age classes for each otolith, and a set of alternative annotation sequences that highlight the structure of the annuli.

Funder

University of Bergen

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3