Investigating fish behavioural responses to LED lights in trawls and potential applications for bycatch reduction in the Nephrops-directed fishery

Author:

Melli Valentina1,Krag Ludvig A1,Herrmann Bent23,Karlsen Junita D1

Affiliation:

1. DTU Aqua, National Institute of Aquatic Resources, North Sea Science Park, Hirtshals DK-9850, Denmark

2. SINTEF Fisheries and Aquaculture, Willemoesvej 2, Hirtshals DK-9850, Denmark

3. University of Tromsø, Breivika, Tromsø N-9037, Norway

Abstract

Abstract Light-emitting diodes (LEDs) have been tested in trawl fisheries to reduce the bycatch of unwanted species through behavioural stimulation. Previous studies used LED lights to either highlight escaping routes or increase the contact rate with square-mesh panels. However, phototactic responses (moving towards or away from light sources) to LED lights could also be exploited to separate species during the catching process. We investigated if either positive or negative phototaxis can be used to improve fish vertical separation from Nephrops (Nephrops norvegicus) in the aft section of a horizontally separated trawl codend. The aim was to increase the proportion of fish entering the upper compartment. We conducted two different experiments in front of the separation into compartments, inserting green LED lights in the upper and lower netting panel, respectively. Species vertical separation was analysed and compared in two identical trawls towed in parallel, one equipped with lights and one without. We obtained significant changes in vertical separation, but no clear species-specific phototactic response was identified. Neither of the light positions improved fish separation from Nephrops. However, the potential of LED lights as behavioural stimulators is confirmed, and a more mechanistic understanding of light and fish vision may improve the results of future applications.

Funder

Danish Ministry of Environment and Food

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Reference46 articles.

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3