Inclusion of ecosystem information in US fish stock assessments suggests progress toward ecosystem-based fisheries management

Author:

Marshall Kristin N1ORCID,Koehn Laura E2,Levin Phillip S34,Essington Timothy E2,Jensen Olaf P5

Affiliation:

1. Fishery Resource Analysis and Monitoring Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA, USA

2. School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA

3. School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA

4. The Nature Conservancy, 74 Wall St, Seattle, WA, USA

5. Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd, New Brunswick, NJ, USA

Abstract

Abstract The appetite for ecosystem-based fisheries management (EBFM) approaches has grown, but the perception persists that implementation is slow. Here, we synthesize progress toward implementing EBFM in the United States through one potential avenue: expanding fish stock assessments to include ecosystem considerations and interactions between species, fleets, and sectors. We reviewed over 200 stock assessments and assessed how the stock assessment reports included information about system influences on the assessed stock. Our goals were to quantify whether and how assessments incorporated broader system-level considerations, and to explore factors that might contribute to the use of system-level information. Interactions among fishing fleets (technical interactions) were more commonly included than biophysical interactions (species, habitat, climate). Interactions within the physical environment (habitat, climate) were included twice as often as interactions among species (predation). Many assessment reports included ecological interactions only as background or qualitative considerations, rather than incorporating them in the assessment model. Our analyses suggested that ecosystem characteristics are more likely to be included when the species was overfished (stock status), the assessment is conducted at a science centre with a longstanding stomach contents analysis program, and/or the species life history characteristics suggest it is likely to be influenced by the physical environment, habitat, or predation mortality (short-lived species, sessile benthic species, or low trophic-level species). Regional differences in stomach contents analysis programs may limit the inclusion of predation mortality in stock assessments, and more guidance is needed on best practices for the prioritization of when and how biophysical information should be considered. However, our results demonstrate that significant progress has been made to use best available science and data to expand single-species stock assessments, particularly when a broad definition of EBFM is applied.

Funder

Lenfest Ocean Program

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3