Variable forage fish biomass and phenology influence marine predator diet, foraging behavior, and species interactions in coastal Newfoundland, Canada

Author:

Davoren Gail K1ORCID

Affiliation:

1. Department of Biological Sciences, University of Manitoba , Winnipeg, MB R3T 2N2 , Canada

Abstract

Abstract Forage fish species provide essential linkages for energy transfer within pelagic marine food webs. Capelin (Mallotus villosus), the focal forage fish in coastal Newfoundland, Canada, suffered a stock collapse in 1991 and has not recovered. Despite this collapse, capelin continue to provide locally abundant prey aggregations. Here, I synthesize the lessons learned from a long-term capelin-predator research program (2004–2022) on the northeast Newfoundland coast during the postcollapse period. I highlight the importance of simultaneously estimating forage fish biomass and predator responses in a multispecies and multiyear context. High interannual variation in capelin spawning timing and biomass was observed. Lower capelin biomass consistently resulted in predator species- and assemblage-level dietary shifts toward a higher diversity of lower trophic level, alternative prey. Energetic foraging costs of seabirds also increased under lower capelin biomass, but responses differed among species. Summer capelin consumption by dominant seabirds (9389 tonnes) and whales (778 tonnes) indicated predator energetic requirements and revealed higher natural mortality relative to fishery-based (1289 tonnes) mortality. Overall, this case study illustrated that, despite high observed behavioural plasticity, varying species-specific predator responses to changing capelin biomass integrated to increase potential competitive interactions under low capelin biomass, providing a basis for ecosystem-level change.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3