Factors affecting the availability of walleye pollock to acoustic and bottom trawl survey gear

Author:

Kotwicki Stan12,Horne John K.12,Punt André E.2,Ianelli James N.1

Affiliation:

1. National Marine Fisheries Service, Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration, 7600 Sand Point Way NE, Seattle, WA 98115, USA

2. School of Fishery and Aquatic Sciences, University of Washington, Box 355020, Seattle, WA 98195, USA

Abstract

Abstract Abundances of semi-pelagic fish are often estimated using acoustic or bottom trawl surveys, both of which sample only a fraction of the water column. Acoustic instruments are effective at sampling the majority of the water column, but they have a near-surface blind zone and a near-bottom acoustic dead zone (ADZ), where fish remain undetected. Bottom trawls are effective near the seabed, but miss fish that are located above the effective fishing height of the trawl. Quantification of the extent of overlap between these gears is needed, particularly in cases where environmental factors play a role. We developed logistic regression models to predict the availability (qa) of walleye pollock (Gadus chalcogrammus) to both acoustic and bottom trawl gears using factors shown to affect qa (depth, light intensity, fish length) and introducing additional factors (tidal currents, surface and bottom temperature, sediment size). Results build on earlier studies and quantify the uncertainty associated with the estimation of the ADZ correction using Bayesian methods. Our findings indicate that on average during the day, walleye pollock are more available to the bottom trawl than to the acoustics. Availability to both gears depends mostly on bottom depth, light conditions, and fish size, and to a lesser extent sediment size. Availability to the acoustic gear is also related on surface temperature. Variability in availability to both gears also depends on environmental factors.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3