Exploring the effect of Marine Protected Areas on the dynamics of fish communities in the southern Benguela: an individual-based modelling approach

Author:

Yemane Dawit1,Shin Yunne-Jai2,Field John G.3

Affiliation:

1. Marine Biology Research Centre, Department of Zoology, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa

2. IRD, CRH, Avenue Jean Monnet, BP 171, 34203 Sete Cedex, France

3. Marine Research (MA-RE) Institute, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa

Abstract

Abstract Yemane, D., Shin, Y-J., and Field, J. G. 2009. Exploring the effect of Marine Protected Areas on the dynamics of fish communities in the southern Benguela: an individual-based modelling approach. – ICES Journal of Marine Science, 66: 378–387. Marine Protected Areas (MPAs) have been suggested as a tool that can achieve some of the goals of an Ecosystem Approach to Fisheries (EAF), e.g. prevention of overexploitation, biodiversity conservation, recovery of overexploited population, but the consequences of their establishment on the dynamics of protected components are often unclear. Spatial and multispecies models can be used to investigate the effects of their introduction. An individual-based, spatially explicit, size-structured, multispecies model (known as OSMOSE) is used to investigate the likely consequences of the introduction of three MPAs off the coast of South Africa, individually or in combination. The simultaneous introduction of the MPAs affected varying proportions of the distribution of the modelled species (5–17%) and 12% of the distribution of the whole community. In general, the introduction of the MPAs in the different scenarios resulted in a relative increase in the biomass of large predatory fish and a decrease in the biomass of small pelagic fish. The simulation demonstrates that consideration of trophic interactions is necessary when introducing MPAs, with indirect effects that may be detrimental to some (mainly smaller prey) species.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3