A roadmap for a quantitative ecosystem-based environmental impact assessment

Author:

Coston-Guarini J.123,Guarini J.-M.13,Hinz Shawn4,Wilson Jeff4,Chauvaud L.35

Affiliation:

1. The Entangled Bank Laboratory, Banyuls-sur-Mer, 66650, France

2. Ecole Doctorale des Sciences de la Mer, UBO, CNRS, UMR 6539-LEMAR IUEM Rue Dumont d’Urville, Plouzané, 29280, France

3. Laboratoire International Associé BeBEST, UBO, Rue Dumont d’Urville, Plouzané, 29280, France

4. Gravity Consulting, Fall City, WA 98024, USA

5. CNRS, UMR 6539-LEMAR, IUEM, Rue Dumont d’Urville, Plouzané, 29280, France

Abstract

Abstract A new roadmap for quantitative methodologies of Environmental Impact Assessment (EIA) is proposed, using an ecosystem-based approach. EIA recommendations are currently based on case-by-case rankings, distant from statistical methodologies, and ecological ideas that lack proof of generality or predictive capacities. These qualitative approaches ignore process dynamics, scales of variations and interdependencies and are unable to address societal demands to link socio-economic and ecological processes (e.g. population dynamics). We propose to re-focus EIA around the systemic formulation of interactions between organisms (organized in populations and communities) and their environments but inserted within a strict statistical framework. A systemic formulation allows scenarios to be built that simulate impacts on chosen receptors. To illustrate the approach, we design a minimum ecosystem model that demonstrates nontrivial effects and complex responses to environmental changes and validated with case study. We suggest that an Ecosystem-Based EIA—in which the socio-economic system is an evolving driver of the ecological one—is more promising than a socio-economic-ecological system where all variables are treated as equal. This refocuses the debate on cause-and-effect, processes, identification of essential portable variables, and allows for quantitative comparisons between projects, which is critical in cumulative effects determinations.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3