Simulation testing the robustness of stock assessment models to error: some results from the ICES strategic initiative on stock assessment methods

Author:

Deroba J.J.1,Butterworth D.S.2,Methot R.D.3,De Oliveira J.A.A.4,Fernandez C.5,Nielsen A.6,Cadrin S.X.7,Dickey-Collas M.58,Legault C.M.1,Ianelli J.9,Valero J.L.10,Needle C.L.11,O'Malley J.M.12,Chang Y-J.13,Thompson G.G.9,Canales C.14,Swain D.P.15,Miller D.C.M.8,Hintzen N.T.16,Bertignac M.17,Ibaibarriaga L.18,Silva A.19,Murta A.19,Kell L.T.20,de Moor C.L.2,Parma A.M.21,Dichmont C.M.22,Restrepo V.R.23,Ye Y.24,Jardim E.25,Spencer P.D.9,Hanselman D.H.26,Blaylock J.27,Mood M.27,Hulson P.-J. F.26

Affiliation:

1. NOAA NMFS, 166 Water Street, Woods Hole, MA, USA

2. Marine Resource Assessment and Management Group (MARAM), Department of Mathematics and Applied Mathematics, University of Cape Town, University Private Bag, Rondebosch 7701, South Africa

3. NOAA NMFS, 2725 Montlake Blvd. E, Seattle, WA, USA

4. Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft Laboratory, Pakefield Road, Lowestoft, SuffolkNR33 OHT, UK

5. ICES, H.C. Andersens Boulevard 44-46, DK Copenhagen V, Denmark

6. National Institute of Aquatic Resources, Technical University of Denmark, Charlottenlund Castle, 2920 Charlottenlund, Denmark

7. University of Massachusetts, School for Marine Science and Technology, 200 Mill Road, Suite 325, Fairhaven, MA, USA

8. Wageningen Institute of Marine Resources and Ecosystem Studies (IMARES), Haringkade 1, 1976 Ijmuiden, Netherlands

9. NOAA NMFS, 7600 Sand Point Way NE, Seattle, WA, USA

10. Center for the Advancement of Population Assessment Methodology (CAPAM), 8901 La Jolla Shores Drive, La Jolla, CA, USA

11. Marine Scotland – Science, The Marine Laboratory, PO Box 101, 375 Victoria Road, Aberdeen AB11 9DB, UK

12. NOAA NMFS, 1845 Wasp Blvd., Building 176, Honolulu, HI, USA

13. Joint Institute for Marine and Atmospheric Research, Pacific Islands Fisheries Science Center, University of Hawaii,Honolulu, HI, USA

14. Instituto de Fomento Pesquero (IFOP), Avda. Blanco Encalada 839, Valparaiso, Chile

15. Fisheries and Oceans Canada, Gulf Fisheries Centre, PO Box 5030, Moncton, NB E1C 9B6, Canada

16. Wageningen UR, Institute for Marine Resources and Ecosystem Studies (IMARES), PO Box 68, 1970 AB Ijmuiden, Netherlands

17. Ifremer, Unité Sciences et Technologies Halieutiques, ZI de la pointe du diable, CS 10070, 29280 Plouzané, France

18. Marine Research Division, AZTI-Tecnalia, Txatxarramendi ugartea z/g, E-48395 Sukarrieta, Bizkaia, Spain

19. IPMA-Instituto Português do Mar e da Atmosfera, I.P. Av. Brasilia, 1449-006 Lisboa, Portugal

20. ICCAT Secretariat, Corazón de María 8, 28002 Madrid, Spain

21. Centro Nacional Patagónico, Blvd. Brown 2915, 9120 Puerto Madryn, Chugut, Argentina

22. CSIRO Wealth from Oceans Flagship, Queensland Biosciences Precinct, 306 Carmody Road, St. Lucia, QLD 4067, Australia

23. International Seafood Sustainability Foundation, 805 15th Street NW, Washington, DC 20005, USA

24. Food and Agriculture Organization of the United Nations, Vialle delle Terme di Caracalla, 00153 Rome, Italy

25. European Commission Joint Research Center, TP 051, Via Enrico Fermi 2749, 21027 Ispra (VA), Italy

26. NOAA NMFS, 17109 Pt. Lena Loop Road, Juneau, AK, USA

27. Integrated Statistics, 172 Shearwater Way, Falmouth, MA, USA

Abstract

Abstract The World Conference on Stock Assessment Methods (July 2013) included a workshop on testing assessment methods through simulations. The exercise was made up of two steps applied to datasets from 14 representative fish stocks from around the world. Step 1 involved applying stock assessments to datasets with varying degrees of effort dedicated to optimizing fit. Step 2 was applied to a subset of the stocks and involved characteristics of given model fits being used to generate pseudo-data with error. These pseudo-data were then provided to assessment modellers and fits to the pseudo-data provided consistency checks within (self-tests) and among (cross-tests) assessment models. Although trends in biomass were often similar across models, the scaling of absolute biomass was not consistent across models. Similar types of models tended to perform similarly (e.g. age based or production models). Self-testing and cross-testing of models are a useful diagnostic approach, and suggested that estimates in the most recent years of time-series were the least robust. Results from the simulation exercise provide a basis for guidance on future large-scale simulation experiments and demonstrate the need for strategic investments in the evaluation and development of stock assessment methods.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Reference27 articles.

1. Model Based Inference in the Life Sciences: A Primer on Evidence

2. Model averaging to estimate rebuilding targets for overfished stocks;Brodziak;Canadian Journal of Fisheries and Aquatic Sciences,2005

3. Bayesian multimodel inference for stock assessment;Brodziak;ICES Journal of Marine Science

4. Why a management procedure approach? Some positives and negatives;Butterworth;ICES Journal of Marine Science,2007

5. Experiences in the evaluation and implementation of management procedures;Butterworth;ICES Journal of Marine Science,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3