Optimising sampling frequency for monitoring heterotrophic protists in a marine ecosystem

Author:

Lehtiniemi Maiju1ORCID,Fileman Elaine2,Hällfors Heidi1,Kuosa Harri1,Lehtinen Sirpa1,Lips Inga3,Setälä Outi1,Suikkanen Sanna1ORCID,Tuimala Jarno1,Widdicombe Claire2

Affiliation:

1. Finnish Environment Institute, Marine Research Centre, 00790 Helsinki, Finland

2. Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK

3. Department of Marine Systems, Tallinn University of Technology, 12618 Tallinn, Estonia

Abstract

Abstract Heterotrophic protists are essential components of the marine ecosystem, yet they are often excluded from monitoring programmes. With limited resources, monitoring strategies need to be optimised considering both scientific knowledge and available resources. In doing so, it is crucial to understand how sampling frequency affects the value of the data. We analysed 11 years of weekly heterotrophic protist time-series data from Station L4 in the Western English Channel to explore how different sampling intervals impact data quality. In the L4 dataset, comprising 55 protist taxa, the reduction of sampling frequency from weekly to four times a year at specific seasons decreased the number of taxa encountered by 38% for ciliates and 29% for heterotrophic dinoflagellates while the mean annual biomass or its mean variation were not affected. Furthermore, when samples were taken only four times a year, biomass peaks of the ten most important taxa were often missed. The primary motivator for this study was furthering the development of the heterotrophic protist monitoring in temperate and subarctic marine areas, e.g. the Baltic Sea. Based on our findings, we give recommendations on sampling frequency to optimise the value of heterotrophic protist monitoring.

Funder

EU

Academy of Finland

Estonian Research Council

Natural Environment Research Council

National Capability Long-term Single Centre Science Programme

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3