Crystallographic texture formation in Fe-9wt%Si alloy during deformation and phase transition at high pressure

Author:

Vasin Roman N12,Kunz Martin3,Wenk Hans-Rudolf1ORCID,Zepeda-Alarcon Eloisa14

Affiliation:

1. Department of Earth and Planetary Science, University of California , Berkeley, CA 94720-4767 , USA

2. Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research , Dubna 141980 , Russia

3. Advanced Light Source, Lawrence Berkeley National Laboratory , Berkeley, CA 94720-8229 , USA

4. LANSCE, Los Alamos National Laboratory , Los Alamos, NM 87544 , USA

Abstract

SUMMARYThe seismic anisotropy of the Earth's solid inner core has been the topic of much research. It could be explained by the crystallographic preferred orientation (CPO) developing during convection. The likely phase is hexagonal close-packed iron (hcp), alloyed with nickel and some lighter elements. Here we use high energy synchrotron X-rays to study CPO in Fe-9wt%Si, uniaxially compressed in a diamond anvil cell in radial geometry. The experiments reveal that strong preferred orientation forms in the low-pressure body-centred cubic (bcc) phase that appears to be softer than pure iron. CPO is attributed to dominant {110}<111> slip. The onset of the bcc→hcp transition occurs at a pressure of ≈15 GPa, and the alloy remains in a two phase bcc + hcp state up to 40 GPa. The hcp phase forms first with a distinct {11$\bar{2}$0} maximum perpendicular to compression. Modelling shows that this is a transformation texture, which can be described by Burgers orientation relationship with variant selection. Experimental results suggest that bcc grains oriented with <100> parallel to compression transform into hcp first. The CPO of the hcp changes only slowly during further pressure and deviatoric stress increase at ambient temperature. After heating to 1600 K, a change in the hcp CPO is observed with alignment of (0001) planes perpendicular to compression that can be interpreted as dominant (0001)<11$\bar{2}$0> slip, combined with {10$\bar{1}$2}<$\bar{1}$011> mechanical twinning, which is similar to the deformation modes suggested previously for pure hcp iron at inner core conditions.

Funder

The University of Tokyo

NSF

DOE

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3