Convection and segregation in heterogeneous orogenic crust with a VOF method – II: how to form migmatite domes

Author:

Louis-Napoléon Aurélie12ORCID,Gerbault Muriel2ORCID,Bonometti Thomas1,Vanderhaeghe Olivier2ORCID,Martin Roland2,Maury Nathan1

Affiliation:

1. Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, INPT, UPS , 31400 Toulouse , France

2. GET (UMR5563 CNRS, Univ. Paul Sabatier, IRD, CNES, OMP) , 14 av. E. Belin, 31400 Toulouse , France

Abstract

SUMMARY Migmatites and granitic-gneisses exhumed in Archean to Phanerozoic segments are former partially molten crustal roots, display typical domes structures ranging in size from kilometres to decakilometres, and are often interpreted as resulting from the development of diapiric or convective gravitational instabilities. In previous work (part I), we determined various regimes of gravity-driven segregation, by considering a thick continental crust heated from below and containing melt related heterogeneities. These heterogeneities, represented by inclusions of distinct densities and viscosities with respect to the ambient partially molten material, can be entrained into convection cells (in the ‘suspension’ and ‘layering’ regimes) and/or accumulate as clusters (in the ‘layering’ and ‘diapirism’ regimes). Here we further investigate the specific conditions that allow for the formation and preservation of domes resulting from diapirism at the top of convective cells. We show that both the cessation of basal heating and the freezing of the buoyant inclusions density favour their stacking and preservation at ca. 15 km depth, within about 10 Myr. The buoyant inclusions form domes, 5–20 km in size, that also record several convective cycles at velocities ranging from 0.5–4 cm yr−1. 3-D models demonstrate their radial geometrical nature. The influence of the size and concentration of the inclusions is also assessed, complementing the characteristics of crustal heterogeneity in driving its differentiation and the formation of migmatite domes.

Funder

Institut National Polytechnique de Toulouse

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3