S Hmax orientation in the Alpine region from observations of stress-induced anisotropy of nonlinear elasticity

Author:

Aiman Y A1,Delorey A A2ORCID,Lu Y1,Bokelmann G1ORCID

Affiliation:

1. Department of Meteorology and Geophysics, University of Vienna , Vienna 1090 , Austria

2. Geophysics Group, Los Alamos National Laboratory , P.O. Box 1663, New Mexico 87545 , USA

Abstract

SUMMARY The orientation of SHmax is commonly estimated from in situ borehole breakouts and earthquake focal mechanisms. Borehole measurements are expensive, and therefore sparse, and earthquake measurements can only be made in regions with many well-characterized earthquakes. Here, we derive the stress-field orientation using stress-induced anisotropy in nonlinear elasticity. In this method, we measure the strain derivative of velocity as a function of azimuth. We use a natural pump-probe (NPP) approach which consists of measuring elastic wave speed using empirical Green’s functions (probe) at different points of the earth tidal strain cycle (pump). The approach is validated using a larger data set in the Northern Alpine Foreland region where the orientation of maximum horizontal compressive stress is known from borehole breakouts and drilling-induced fractures. The technique resolves NNW-SSW to N-S directed SHmax which is in good agreement with conventional methods and the recent crustal stress model. We confirm that the NPP method can be applied to dense large-scale seismic arrays. The technique is then applied to the Southern Alps to understand the contemporary stress pattern associated with the ongoing deformation due to counterclockwise rotation of the Adriatic plate with respect to the European plate. Our results explain why the two major faults in Northeastern Italy, the Giudicarie Fault and the Periadriatic Line (Pustertal–Gailtal Fault) are currently inactive, while the currently acting stress field allows faults in Slovenia to deform actively. We have demonstrated that the pump-probe method has the potential to fill in the measurement gap left by conventional approaches, both in terms of regional coverage and in depth.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference78 articles.

1. The crustal stress field of Germany: a refined prediction;Ahlers;Geotherm. Energy,2022

2. Database of active faults in Slovenia: compiling a new active fault database at the junction between the Alps, the Dinarides and the Pannonian Basin Tectonic Domains;Atanackov;Front. Earth Sci.,2021

3. Sedimentary and structural evolution of the German Molasse Basin;Bachmann;Eclogae geol. Helv.,1992

4. Evolution of the Molasse Basin (Germany, Switzerland);Bachmann;Tectonophysics,1987

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New approaches to an old problem: addressing spatial gaps in the World Stress Map;Geological Society, London, Special Publications;2024-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3