Dynamic rupture simulations based on interseismic locking models—taking the Suoerkuli section of the Altyn Tagh fault as an example

Author:

Gu Yuhao1ORCID,Zhang Zhenguo123ORCID,Wang Wenqiang1ORCID,Wang Zijia1

Affiliation:

1. Department of Earth and Space Sciences, Southern University of Science and Technology , Shenzhen 518055 , China

2. Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology, Southern University of Science and Technology , Shenzhen 518055 , China

3. Southern Marine Science and Engineering Guangdong Laboratory , Guangzhou 511458 , China

Abstract

SUMMARY For simulating the dynamic rupture process in earthquake scenarios, the stress distribution along the fault remains unclear owing to a lack of direct measurements. Regional stress fields are often resolved onto the fault plane to determine the stress distribution along it. To overcome this limitation, we considered different interseismic locking models to better constrain the actual stress distribution. Specifically, we took the Suoerkuli section in the middle of the Altyn Tagh fault, China, and conducted dynamic rupture simulations to obtain possible earthquake scenarios. The surface rupture length and moment magnitude obtained from the simulations were consistent with those of historical earthquakes. Compared with the traditional stress field resolution method, our approach led to better constrained fault rupture extent and distribution characteristics of regional intensity, thereby avoiding overestimations of earthquake damage. We conclude that examining regional seismic hazards and risks based on seismic dynamic rupture simulations that account for the locking ratio of the fault plane is advantageous, and should be encouraged.

Funder

National Natural Science Foundation of China

Southern University of Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3