Numerical modeling of caldera formation using Smoothed Particle Hydrodynamics (SPH)

Author:

Mullet B1ORCID,Segall P1,Fávero Neto A H2ORCID

Affiliation:

1. Department of Geophysics, Stanford University

2. Department of Civil & Environmental Engineering, Bucknell University

Abstract

SUMMARYCalderas are kilometer-scale basins formed when magma is rapidly removed from shallow magma storage zones. Despite extensive previous research, many questions remain about how host rock material properties influence the development of caldera structures. We employ a mesh-free, continuum numerical method, Smoothed Particle Hydrodynamics (SPH) to study caldera formation, with a focus on the role of host rock material properties. SPH provides several advantages over previous numerical approaches (finite element or discrete element methods), naturally accommodating strain localization and large deformations while employing well-known constitutive models. A continuum elastoplastic constitutive model with a simple Drucker–Prager yield condition can explain many observations from analogue sandbox models of caldera development. For this loading configuration, shear band orientation is primarily controlled by the angle of dilation. Evolving shear band orientation, as commonly observed in analogue experiments, requires a constitutive model where frictional strength and dilatancy decrease with strain, approaching a state of zero volumetric strain rate. This constitutive model also explains recorded loads on the down-going trapdoor in analogue experiments. Our results, combined with theoretical scaling arguments, raise questions about the use of analogue models to study caldera formation. Finally, we apply the model to the 2018 caldera collapse at Kīlauea volcano and conclude that the host rock at Kīlauea must exhibit relatively low dilatancy to explain the inferred near-vertical ring faults.

Funder

NSF

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An SPH framework for drained and undrained loading over large deformations;International Journal for Numerical and Analytical Methods in Geomechanics;2024-06-14

2. Earthquake Cycle Mechanics During Caldera Collapse: Simulating the 2018 Kı̄lauea Eruption;Journal of Geophysical Research: Solid Earth;2024-05

3. Single-layer soil-water coupled SPH method and its application to sinkhole simulation;Acta Geotechnica;2023-10-27

4. The 2018 Eruption of Kīlauea: Insights, Puzzles, and Opportunities for Volcano Science;Annual Review of Earth and Planetary Sciences;2023-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3