Combination of geometric and gravimetric data sets for the estimation of high-resolution mass balances of the Greenland ice sheet

Author:

Graf M1ORCID,Pail R1ORCID

Affiliation:

1. Chair of Astronomical and Physical Geodesy, Technical University of Munich , 80333 Munich , Germany

Abstract

SUMMARY In this study, we develop a model that allows to combine gravimetric and geometric data. By the combination, we improve the spatial resolution of the resulting mass balance estimate compared to a purely gravimetric one. The equivalent ice or firn density of the changing ice volume is estimated within a mathematical inversion model, which includes geometric information about the volumetric change of the ice sheet and the resulting gravity change. This gravity change is computed from monthly GRACE gravity fields. They have a limited spatial resolution of a few 100 km, but allow direct conclusions about the true mass changes over Greenland. The ice-volume changes are described by a product by the Climate Change Initiative of European Space Agency, which is based on altimetry data. They have a very fine spatial resolution (down to a few km), but are not directly sensitive to mass changes. By combining both data sets in a common mathematical model, the advantages of both data types (direct sensitivity to mass versus high spatial resolution) are made use of. In this way, we improve the spatial resolution of mass balance estimates over Greenland. This leads to a map of mass trends, which has the same spatial resolution as the input map of geometric changes, but which is consistent with the input gravity fields. It will enable improving the localization of mass change signals of ice sheets and glaciers, which are usually rather small-scale. We compare our estimates to the results of complementary studies regarding the total mass loss of the Greenland ice sheet and its surrounding land surface. Our study leads to a value of $-213\pm 37\, \text{Gt}\,\text{a}^{-1}$ in the time span from 2011 to 2015. We also discuss the problem of separating the mass contribution of the Greenland ice sheet itself and its surrounding region.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference33 articles.

1. Ice sheet mass balance and ocean level;Allison;Antarctic Sci.,2009

2. Greenland and Antarctica ice sheet mass changes and effects on global sea level;Forsberg;Surv. Geophys.,2017

3. Ocean, cryosphere and sea level change;Fox-Kemper,2021

4. Practical Numerical Computation of Love Numbers and Applications;Gegout,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3