Cascading foreshocks, aftershocks and earthquake swarms in a discrete fault network

Author:

Im Kyungjae1ORCID,Avouac Jean-Philippe1ORCID

Affiliation:

1. Geology and Planetary Science Division, California Institute of Technology , Pasadena, CA 91125 , United States

Abstract

SUMMARYEarthquakes come in clusters formed of mostly aftershock sequences, swarms and occasional foreshock sequences. This clustering is thought to result either from stress transfer among faults, a process referred to as cascading, or from transient loading by aseismic slip (pre-slip, afterslip or slow slip events). The ETAS statistical model is often used to quantify the fraction of clustering due to stress transfer and to assess the eventual need for aseismic slip to explain foreshocks or swarms. Another popular model of clustering relies on the earthquake nucleation model derived from experimental rate-and-state friction. According to this model, earthquakes cluster because they are time-advanced by the stress change imparted by the mainshock. This model ignores stress interactions among aftershocks and cannot explain foreshocks or swarms in the absence of transient loading. Here, we analyse foreshock, swarm and aftershock sequences resulting from cascades in a Discrete Fault Network model governed by rate-and-state friction. We show that the model produces realistic swarms, foreshocks and aftershocks. The Omori law, characterizing the temporal decay of aftershocks, emerges in all simulations independently of the assumed initial condition. In our simulations, the Omori law results from the earthquake nucleation process due to rate and state friction and from the heterogeneous stress changes due to the coseismic stress transfers. By contrast, the inverse Omori law, which characterizes the accelerating rate of foreshocks, emerges only in the simulations with a dense enough fault system. A high-density complex fault zone favours fault interactions and the emergence of an accelerating sequence of foreshocks. Seismicity catalogues generated with our discrete fault network model can generally be fitted with the ETAS model but with some material differences. In the discrete fault network simulations, fault interactions are weaker in aftershock sequences because they occur in a broader zone of lower fault density and because of the depletion of critically stressed faults. The productivity of the cascading process is, therefore, significantly higher in foreshocks than in aftershocks if fault zone complexity is high. This effect is not captured by the ETAS model of fault interactions. It follows that a foreshock acceleration stronger than expected from ETAS statistics does not necessarily require aseismic slip preceding the mainshock (pre-slip). It can be a manifestation of a cascading process enhanced by the topological properties of the fault network. Similarly, earthquake swarms might not always imply transient loading by aseismic slip, as they can emerge from stress interactions.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3