Source parameter analysis using distributed acoustic sensing – an example with the PoroTomo array

Author:

Chen Xiaowei1ORCID

Affiliation:

1. Texas A&M University , College Station, TX 77845 , USA

Abstract

SUMMARYIn this study, I demonstrate that distributed acoustic sensing (DAS) raw strain rate data can directly be used to estimate spectral source parameters through an Empirical Green's Function (EGF) deconvolution analysis. Previously, DAS had been widely used in passive seismology to image the subsurface and analyze ground motion variations by converting strain or strain rate to particle velocity or acceleration prior to analysis. In this study, spectral analysis is applied to the PoroTomo joint DAS and seismic Nodal array in the Brady Hot Springs geothermal field to obtain source parameters for two M4 earthquakes via EGF analysis, where nearly collocated smaller events are used as an EGF to remove path and site effects. The EGF workflow is applied to raw DAS strain rate data without conversion to particle velocities and raw Nodal seismic data. The DAS and Nodal results are very consistent with similar features of spectral ratios, corner frequencies and moment ratios for the same event pairs. The uncertainty due to stacked spectral measurement is much lower on the DAS array, suggesting better stability of spectral shape measurement, possibly due to the much denser spatial sampling. The uncertainty due to model fitting is similar between DAS and Nodal arrays with slightly lower uncertainty on the DAS array. These observations demonstrate potential for directly using the strain rate measurements from DAS arrays for earthquake source characterizations.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3