Adjoint-based data assimilation for reconstruction of thermal convection in a highly viscous fluid from surface velocity and temperature snapshots

Author:

Nakao Atsushi12ORCID,Kuwatani Tatsu1ORCID,Ito Shin-ichi34ORCID,Nagao Hiromichi34ORCID

Affiliation:

1. Research Institute for Marine Geodynamics, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) , Yokosuka, 237-0061 , Japan

2. Graduate School of Engineering Science, Akita University , Akita 010-8502 , Japan

3. Earthquake Research Institute, The University of Tokyo , Tokyo 113-0032 , Japan

4. Graduate School of Information Science and Technology, The University of Tokyo , Tokyo 113-8656 , Japan

Abstract

SUMMARY It is a general problem in geoscience to estimate the time-series of velocity and temperature fields for a fluid based on limited observations, such as the flow velocity at the fluid surface and/or a temperature snapshot after flow. In this study, an adjoint-based data assimilation method (also known as 4-D variational data assimilation) was used to reconstruct the thermal convection in a highly viscous fluid (e.g. Earth’s mantle) to investigate which observations constrain the thermal convection and how accurately the convection can be reconstructed for different wavelengths. The data assimilated to the adjoint-based model were generated synthetically from forward models with convecting cells of different length-scales. Based on the surface velocity and temperature snapshot, our simulations successfully reconstructed thermal convection over 50 Myr in the case that the wavelength of the convective cells is sufficiently large. We obtained two main results from this parametric study. (1) When we only considered instantaneous thermal structure fitting in the cost function, the convection reconstruction tended to fail. However, there are some cases where the laminar thermal convection can be reconstructed by assimilating only the velocity along the fluid surface. (2) There is a limit to the reconstruction of thermal convection in the case that the convecting cells are small (∼1000 km for a 50 Myr reconstruction). We propose that (1) is related to the balance of forces due to the thermal buoyancy and viscous stress around the thermal anomalies and (2) is related to how information is preserved (i.e. how the previous thermal structure is maintained in the observable state throughout the convection process). The results enable the use of geological records to estimate time-series of velocity and temperature in Earth’s deep interior, even though the records may only contain information from shallow parts of Earth.

Funder

Japan Science and Technology Agency

CREST

MEXT

JSPS

University of Tokyo

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3