Converted-wave reverse time migration imaging in subduction zone settings

Author:

Langer Leah1,Pollitz Fred F1,McGuire Jeffrey J1

Affiliation:

1. U.S. Geological Survey , Moffett Field, CA , USA

Abstract

SUMMARYWe use a newly developed 2-D elastic reverse time migration (RTM) imaging algorithm based on the Helmholtz decomposition to test approaches for imaging the descending slab in subduction zone regions using local earthquake sources. Our elastic RTM method is designed to reconstruct incident and scattered wavefields at depth, isolate constituent P- and S-wave components via Helmholtz decomposition, and evaluate normalized imaging functions that leverage dominant P and S signals. This method allows us to target particular converted-wave scattering geometries, for example incident S to scattered P, which may be expected to have dominant signals in any given data set. The method is intended to be applied to dense seismic array observations that adequately capture both incident and converted wavefields. We draw a direct connection between our imaging functions and the first-order contrasts in shear wave material properties across seismic discontinuities. Through tests on synthetic data using either S → P or P → S conversions, we find that our technique can successfully recover the structure of a subducting slab using data from a dense wide-angle array of surface stations. We also calculate images with a small-aperture array to test the impact of array geometry on image resolution and interpretability. Our results show that our imaging technique is capable of imaging multiple seismic discontinuities at depth, even with a small number of earthquakes, but that limitations arise when a small aperture array is considered. In this case, the presence of artefacts makes it more difficult to determine the location of seismic discontinuities.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3