Estimating the occurrence of slow slip events and earthquakes with an ensemble Kalman filter

Author:

Diab-Montero Hamed Ali1ORCID,Li Meng2,van Dinther Ylona2ORCID,Vossepoel Femke C1

Affiliation:

1. Department of Geoscience and Engineering, Delft University of Technology , Mekelweg 5, 2628 CD Delft , The Netherlands

2. Department of Earth Sciences, Utrecht University , Princentonlaan 8a, 3584 CB Utrecht , The Netherlands

Abstract

SUMMARY Our ability to forecast earthquakes and slow slip events is hampered by limited information on the current state of stress on faults. Ensemble data assimilation methods permit estimating the state by combining physics-based models and observations, while considering their uncertainties. We use an ensemble Kalman filter (EnKF) to estimate shear stresses, slip rates and the state θ acting on a fault point governed by rate-and-state friction embedded in a 1-D elastic medium. We test the effectiveness of data assimilation by conducting perfect model experiments. We assimilate noised shear-stress and velocity synthetic values acquired at a small distance to the fault. The assimilation of uncertain shear stress observations improves in particular the estimates of shear stress on fault segments hosting slow slip events, while assimilating observations of velocity improves their slip-rate estimation. Both types of observations help equally well to better estimate the state θ. For earthquakes, the shear stress observations improve the estimation of shear stress, slip rates and the state θ, whereas the velocity observations improve in particular the slip-rate estimation. Data assimilation significantly improves the estimates of the temporal occurrence of slow slip events and to a large extent also of earthquakes. Rapid and abrupt changes in velocity and shear stress during earthquakes lead to non-Gaussian priors for subsequent assimilation steps, which breaks the assumption of Gaussian priors of the EnKF. In spite of this, the EnKF still provides estimates that are unexpectedly close to the true evolution. In fact, the forecastability for earthquakes for the same alarm duration is very similar to slow slip events, having a very low miss rate with an alarm duration of just 10 per cent of the recurrence interval of the events. These results confirm that data assimilation is a promising approach for the combination of uncertain physics and indirect, noisy observations for the forecasting of both slow slip events and earthquakes.

Funder

NWO

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3