Locating tectonic tremors with uncertainty estimates: time- and amplitude-difference optimization, wave propagation-based quality control and Bayesian inversion

Author:

Akuhara Takeshi1ORCID,Yamashita Yusuke2ORCID,Sugioka Hiroko3ORCID,Shinohara Masanao1ORCID

Affiliation:

1. Earthquake Research Institute, The University of Tokyo , Tokyo 113-0032 , Japan

2. Miyazaki Observatory, Disaster Prevision Research Institute, Kyoto University , Miyazaki 889-2161 , Japan

3. Department of Planetology, Graduate School of Science, Kobe University , Kobe 657-8501 , Japan

Abstract

SUMMARY The accurate location of tectonic tremors helps improve understanding of their underlying physical processes. However, current location methods often do not statistically evaluate uncertainties to a satisfactory degree and do not account for potential biases due to subsurface structures not included in the model. To address these issues, we propose a novel three-step process for locating tectonic tremors. First, the measured time- and amplitude differences between station pairs are optimized to obtain station-specific relative time and amplitude measurements with uncertainty estimates. Secondly, the time– and amplitude–distance relationships in the optimized data are used to roughly estimate the propagation speed (i.e. shear wave velocity) and attenuation strength. Linear regression is applied to each event, and the resulting velocity and attenuation strength are used for quality control. Finally, the tremor location problem is formulated within a Bayesian framework where the model parameters include the source locations, local site delay/amplification factors, shear wave velocity and attenuation strength. The Markov chain Monte Carlo algorithm is used to sample the posterior probability and is augmented by a parallel tempering scheme for an efficient global search. We tested the proposed method on ocean-bottom data indicating an intense episode of tectonic tremors in Kumano-nada within the Nankai Trough subduction zone. The results show that the range of the 95 per cent confidence interval is typically <7 km horizontally and <10 km vertically. A series of experiments with different inversion settings reveals that adopting amplitude data and site correction factors help reduce random error and systematic bias, respectively. Probabilistic sampling allows us to spatially map the probability of a tremor occurring at a given location. The probability map is used to identify lineaments of tremor sources, which provides insights into structural factors that favour tremor activity.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3