Remaining non-isostatic effects in isostatic-gravimetric Moho determination—is it needed?

Author:

Abrehdary M1ORCID,Sjöberg L E12

Affiliation:

1. Department of Earth Sciences, Division of Geophysics, Uppsala University (UU) , SE-75236 Uppsala , Sweden

2. Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH) , SE-10044 Stockholm , Sweden

Abstract

SUMMARY For long time the study of the Moho discontinuity (or Moho) has been a crucial topic in inferring the dynamics of the Earth's interior, and with profitable result it is mapped by seismic data, but due to the heterogeneous distribution of such data the quality varies over the world. Nevertheless, with the advent of satellite gravity missions, it is today possible to recover the Moho constituents (i.e. Moho depth; MD and Moho density contrast; MDC) via gravity observations based on isostatic models. Prior to using gravity observations for this application it must be stripped due to the gravitational contributions of known anomalous crustal density structures, mainly density variations of oceans, glacial ice sheets and sediment basins (i.e. stripping gravity corrections). In addition, the gravity signals related mainly with masses below the crust must also be removed. The main purpose of this study is to estimate the significance of removing also remaining non-isostatic effects (RNIEs) on gravity, that is, gravity effects that remain after the stripping corrections. This is carried out by using CRUST19 seismic crustal model and employing Vening Meinesz–Moritz (VMM) gravimetric-isostatic model in recovering the Moho constituents on a global scale to a resolution of 1° × 1°. To reach this goal, we present a new model, named MHUU22, formed by the SGGUGM2 gravitational field, Earth2014 topography, CRUST1.0 and CRUST19 seismic crustal models. Particularly, this study has its main emphasis on the RNIEs on gravity and Moho constituents to find out if we can modify the stripping gravity corrections by a specific correction of the RNIEs. The numerical results illustrate that the RMS differences between MHUU22 MD and the seismic model CRUST1.0 and least-squares combined model MOHV21 are reduced by 33 and 41 per cent by applying the NIEs, and the RMS differences between MHUU22 MDC and the seismic model CRUST1.0 and least-squares combined model MDC21 are reduced by 41 and 23 per cent when the above strategy for removing the RNIEs is applied. Hence, our study demonstrates that the specific correction for the RNIEs on gravity disturbance is significant, resulting in remarkable improvements in MHUU22, which more clearly visualize several crustal structures.

Funder

Swedish National Space Agency

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3