The coherence function and lithospheric elastic thickness of the Zagros fold and thrust belt

Author:

Ghalehnovi Samira1,Ardestani Vahid E1,Pysklywec Russell N2,Balouch Mehrdad3

Affiliation:

1. Institute of Geophysics, University of Tehran , Tehran , Iran

2. Department of the Earth Sciences, University of Toronto , Toronto , Canada

3. Department of Civil Engineering, Shahid Bahonar University of Kerman , Kerman , Iran

Abstract

SUMMARY This study derives the spatial variation of the elastic thickness (Te) and its implications for understanding the structure, geodynamic and seismicity of the lithosphere for the Zagros fold and thrust belt region of the Arabia–Eurasia collision zone. Te is calculated using the coherence function in the fan wavelet domain based on recent terrestrial Bouguer gravity and topography data as input signals. Utilizing the load deconvolution method and Brent's method of 1-D minimization, the final Te for the survey region is estimated for each grid node of the studied area. To illustrate the mass distribution in the studied area, the subsurface loading fraction (F) is calculated simultaneously with Te in the inversion. The crust thickness and density from three different global crustal models are tested and the results obtained for these input models do not yield substantially different Te patterns. The final results are in accord with the global Te models as well as previous rheological, geodynamical and flexural studies, however, this study establishes much more detailed regional information. The calculations yield a mean value of Te of 61 km for the Zagros, with a mean estimated error of about 5 km. The high-Te values (>70 km) are observed in the southeast of the studied area (some parts of the Sanandaj–Sirjan zone, Urumieh–Dokhtar magmatic arc and most of the Central Iranian blocks); while over most of the northwest of the studied area, the value of Te is about 58 km. The Te results are consistent with the lithospheric structure of the study area and also support the idea of the crust–mantle decoupling. Further, there is a positive and negative correlation between the surface wave velocity and surface heat flow, respectively. The mean value estimated for the internal loading friction (F) of 0.4 means in most of the studied areas we may consider that the surface loading is dominant, or at least the ratio of the surface and subsurface loading can be assumed equal. Based on earthquake distribution in the period 1900–2020, seismicity is more likely to occur in areas with a relatively low value of Te.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3