The crustal structure of the western Amundsen Basin, Arctic Ocean, derived from seismic refraction/wide-angle reflection data

Author:

Castro Carlos F12ORCID,Funck Thomas1,Hopper John R1ORCID

Affiliation:

1. Department of Geophysics and Sedimentary Basins, Geological Survey of Denmark and Greenland , Øster Voldgade 10, 1350 Copenhagen K , Denmark

2. The Niels Bohr Institute, University of Copenhagen , Blegdamsvej 17, 2100 Copenhagen , Denmark

Abstract

SUMMARY Two geophysical expeditions (LOMROG II and III) were carried out in 2009 and 2012 to acquire seismic data in the western Amundsen Basin in the Arctic Ocean, a basin formed by ultraslow seafloor spreading at the Gakkel Ridge. Previous studies show alternating magmatic and amagmatic segments at the ridge but it is unclear if such segmentation persisted throughout the entire opening history of the basin. The seismic refraction data were used to develop P-wave velocity models down to the uppermost mantle using forward modelling of traveltimes. The coincident seismic reflection data were used to constrain the geometry of the sedimentary layers and for characterizing the acoustic basement. 2-D gravity modelling was used to determine the Moho depth in areas when data quality was insufficient to resolve a Moho reflection. The models distinguish three different basement types: oceanic crust with layers 2 and 3, oceanic crust that is lacking a layer 3 and exhumed and serpentinized mantle. The maximum observed crustal thickness is 6 km. Areas with thin crust (<3 km) may be underlain by partially serpentinized mantle. Where exhumed mantle is observed, a serpentinization front separates highly serpentinized mantle at the top from partially serpentinized mantle below. The presence of oceanic crust off-axis of the presently amagmatic sector of the Gakkel Ridge indicates that there is both a spatial and temporal variation of crustal accretion processes at the ridge.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3